15 resultados para Pathogenicity

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

All Australian Aborigines have experienced the impact of Western culture to some extent which has resulted in the traditional cultures being irrevocably decimated. The reaction to the disintegration of traditional culture has been marked by a variety of outcomes. While some Aborigines have either accepted or reached a level of accommodation to the new order, others have responded in maladaptive ways. For some Aborigines, the disintegration of traditional culture and society has generated conflict, confusion and the disintegration of personality, which is conducive to the evolution of a dysfunctional group. It is the circumstances of and policy responses to dysfunctional Aboriginal groups, therefore, that is the concern of this article.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Australia is separated from the Asian faunal realm by Wallace's Line, across which there is relatively little avian migration. Although this does diminish the risk of high pathogenicity avian influenza of Asian origin arriving with migratory birds, the barrier is not complete. Migratory shorebirds, as well as a few landbirds, move through the region on annual migrations to and from Southeast Asia and destinations further north, although the frequency of infection of avian influenza in these groups is low. Nonetheless,high pathogenicity H5N1 has recently been recorded on the island of New Guinea in West Papua in domestic poultry. This event increases interest in the movements of birds between Wallacea in eastern Indonesia, New Guinea, and Australia, particularly by waterbirds. There are frequent but irregular movements of ducks, geese, and other waterbirds across Torres Strait between New Guinea and Australia, including movements to regions in which H5N1 has occurred in the recent past. Although the likelihood of avian influenza entering Australia via an avian vector is presumed to be low, the nature and extent of bird movements in this region is poorly known. There have been five recorded outbreaks of high pathogenicityavian influenza in Australian poultry flocks, all of the H7 subtype. To date, Australia is the only inhabited continent not to have recorded high pathogenicity avian influenza since 1997, and H5N1 has never been recorded. The ability to map risk from high pathogenicity avian influenza to Australia is hampered by the lack of quantitative data on the extent of bird movements between Australia and its northern neighbors.Recently developed techniques offer the promise to fill this knowledge gap.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The very virulent (vv) pathotype of infectious bursal disease virus (IBDV) has spread rapidly throughout Europe, Asia, and the Middle East. Although Australia is currently unaffected, there remains the potential for incursion of an exotic isolate. The aim of this study was to identify putative virulence determinants of IBDV to facilitate the development of improved diagnostic assays for detection and characterisation of vvIBDV isolates. Sequencing of Indonesian vvIBDV Tasik94 revealed a unique substitution [ A�¨S222] in the hypervariable region (HVR) of viral protein (VP) VP2, which did not appear to impinge on virulence or antigenicity. Phylogenetic analyses indicated that Tasik94 was closely related to Asian and European vvIBDV strains. Extensive alignment of deduced protein sequences across the HVR of VP2 identified residuesI242 I256 and I294 as putative markers of the vv phcnotype. Comparison of the pathology induced by mildly-virulent Australian IBDV 002/73 and Indonesian vvIBDV Tasik94, revealed that histological lesions in the spleen, thymus and bone marrow were restricted to Tasik94-infected birds, suggesting the enhanced pathogenicity of vvIBDV might be attributed to replication in non-bursal lymphoid organs. The biological significance of the VP2 HVR in virulence was assessed using recombinant viruses generated by reverse genetics. Both genomic segments of Australian IBDV 002/73, and recombinant segment A constructs in which the HVR of 002/73 was replaced with the corresponding region of either tissue culture-adapted virus or vvIBDV (Tasik94), were cloned behind T7 RNA polymerase promoter sequences. In vitro transcription/translation of each construct resulted in expression of viral proteins. Co-transfection of synthetic RNA transcripts initiated replication of both tissue culture-adapted parental and recombinant viruses, however attempts to rescue non-adapted viruses in specific-pathogen-free (SPF) chickens were unsuccessful. Nucleotide sequence variation in the HVR of VP2 was exploited for the development of a new diagnostic assay to rapidly detect exotic IBDV isolates, including vvIBDV, using reverse transcription polymerase chain reaction (RT-PCR) amplification and Bmrl restriction enzyme digestion. The assay was capable of differentiating between endemic and exotic IBDV in 96% of 105 isolates sequenced to date.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monoclonal antibodies were developed against pathogenic vibrios for use in rapid identification in disease situations of humans, fish and shellfish. Of the 12 fusions performed using V. alginolyticus, V. anguillarum, V. carchariae, V. cholerae, V. damsela, V. furnissii, V. harveyi, V. ordalii, V. parahaemolyticus and V. vulnificus, a total of 102 hybridomas were obtained. Based on cross-reactivity of a wide range of Vibrio strains and other gram-negative bacteria, three broad types of monoclonal antibodies were found. The three categories were: (1) ones that were species-specific or specific to a particular surface antigen, (2) a large number that reacted with several Vibrio species, and (3) three that reacted with most Vibrio strains but no other gram-negative bacteria. Each species-specific monoclonal antibody only recognized its corresponding Vibrio species and was used for identifying unknown species, confirming diagnosis of clinical isolates. In addition, several monoclonal antibodies only cross-reacted with similar Vibrio species, e.g. V. parahaemolyticus and V. alginolyticus which share a common H-antigen. Monoclonal antibodies reacting with several Vibrio species were not of particular use in diagnostic situations. Three monoclonal antibodies of the last group did not react with other genera of the family Vibrionaceae, namely Aeromonas, Photobacterium and Plesiomonas nor a wide range of gram-negative enteric bacteria. These data indicated the existence of an antigenic surface determinant common to Vibrio species. One monoclonal reacted with the heat-stable antigenic determinants on the cell surface as v as lipopolysaccharide extracted from all the vibrios studied, thus making it useful for large- scale screening of acute infections of vibrios. In a blind test, seven Vibrio species, isolated from 6 marine and a freshwater source were identified by two laboratories using phenetic tests. Results of immunotyping using monoclonals, three of seven were diagnosed as the same species, another three were designated as Vibrio species but could not be classified further due to the library not having the corresponding monoclonal, and one was diagnostically questionable. Two further tests were carried out. An unknown Vibrio formalin-fixed isolated from diseased marine animal was identified as V. parahaemolyticus by ELISA and FITC. Clinical human isolates of V. alginolyticus, V. parahaemolyticus and V. vulnificus were confirmed by monoclonals. Australian isolates of V. anguillarum appeared to be mostly of serotype O1. monoclonals raised to V. anguillarum AFHRL 1 reacted with only serotype O1 from Denmark but also most Australian isolates. All vibrios pathogenic to fish and shellfish, i.e. V. anguillarum, V. ordalii, V. alginolyticus, V. carchariae, V. cholerae, V. damsela, V. harveyi, V. parahaemolyticus and V. vulnificus, were used for attachment studies to fish cells using phase contrast and FITC-immunofluorescence microscopy. Of these vibrios, V. anguillarum, V. ordalii and V. perahaemolyticus, were found to adhere to different cells and tissues of rainbow trout while others did not appear to attach. However, attachment was inhibited by monoclonal antibodies specific to only these three vibrios. Lipopolysaccharide is well known as being a contributing factor in pathogenicity of gram-negative bacteria. PAGE electrophoresis of extracted LPS from 9 strains covering 6 Vibrio species showed the presence of a common 15,000 D fragment. This fragment was verified by immunoblotting with a genus-specific monoclonal antibody (i.e. F11P411F) recognizing nearly all vibrios. The common LPS fragment was separated and used to raise polyclonal antisera in mouse which reacted strongly with LPS itself, live as well as sodium azide-killed vibrios, but not with other gram-negative bacteria. This raised the possibility of developing vaccine from Vibrio LPS. Monoclonal antibodies developed in the present study enabled rapid identification of a number of pathogenic Vibrio species. There is still further work to produce monoclonal antibodies against additional vibrios that are probably pathogenic. These included V. fluvialis, V. hollisae, V. metschnikovii, V. minicus, V. salmonella and V. tubiashii. Together the application will be of significance in clinical diagnostic work, in the monitoring of vibriosis in fish farms and in quarantine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diseases in natural ecosystems are often assumed to be less severe than those observed in domestic cropping systems due to the extensive biodiversity exhibited in wild vegetation communities. In Australia, it is this natural biodiversity that is now under threat from Phytophthora cinnamomi. The soilborne Oomycete causes severe decline of native vegetation communities in south-western Victoria, Australia, disrupting the ecological balance of native forest and heathland communities. While the effect of disease caused by P. cinnamomi on native vegetation communities in Victoria has been extensively investigated, little work has focused on the Anglesea healthlands in south-western Victoria. Nothing is known about the population structure of P. cinnamomi at Anglesea. This project was divided into two main components to investigate fundamental issues affecting the management of P. cinnamomi in the Anglesea heathlands. The first component examined the phenotypic characteristics of P. cinnamomi isolates sampled from the population at Anglesea, and compared these with isolates from other regions in Victoria, and also from Western Australia. The second component of the project investigated the effect of the fungicide phosphonate on the host response following infection by P. cinnamomi. Following soil sampling in the Anglesea heathlands, a collection of P, cinnamomi isolates was established. Morphological and physiological traits of each isolate were examined. All isolates were found to be of the A2 mating type. Variation was demonstrated among isolates in the following characteristics: radial growth rate on various nutrient media, sporangial production, and sporangial dimensions. Oogonial dimensions did not differ significantly between isolates. Morphological and physiological variation was rarely dependant on isolate origin. To examine the genetic diversity among isolates and to determine whether phenotypic variation observed was genetically based, Random Amplified Polymorphic DNA (RAPD) analyses were conducted. No significant variation was observed among isolates based on an analysis of molecular variance (AMQVA). The results are discussed in relation to population biology, and the effect of genetic variation on population structure and population dynamics. X australis, an arborescent monocotyledon indigenous to Australia, is highly susceptible to infection by P. cinnamomi. It forms an important component of the heathland vegetation community, providing habitat for native flora and fauna, A cell suspension culture system was developed to investigate the effect of the fungicide phosphonate on the host-pathogen interaction between X. australis and P. cinnamomi. This allowed the interaction between the host and the pathogen to be examined at a cellular level. Subsequently, histological studies using X. australis seedlings were undertaken to support the cellular study. Observations in the cell culture system correlated well with those in the plant. The anatomical structure of X australis roots was examined to assist in the interpretation of results of histopathological studies. The infection of single cells and roots of X. australis, and the effect of phosphonate on the interaction are described. Phosphonate application prior to inoculation with P. cinnamomi reduced the infection of cells in culture and of cells in planta. In particular, phosphonate was found to stimulate the production of phenolic material in roots of X australis seedlings and in cells in suspension cultures. In phosphonate-treated roots of X australis seedlings, the deposition of electron dense material, possibly lignin or cellulose, was observed following infection with P. cinnamomi. It is proposed that this is a significant consequence of the stimulation of plant defence pathways by the fungicide. Results of the study are discussed in terms of the implications of the findings on management of the Anglesea heathlands in Victoria, taking into account variation in pathogen morphology, pathogenicity and genotype. The mode of action of phosphonate in the plant is discussed in relation to plant physiology and biochemistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacterial genomes reflect their adaptation strategies through nucleotide usage trends found in their chromosome composition. Bacteria, unlike eukaryotes contain a wide range of genomic G + C. This wide variability may be viewed as a response to environmental adaptation. Two overarching trends are observed across bacterial genomes, the first, correlates genomic G + C to environmental niches and lifestyle, while the other utilizees intra-genomic G + C incongruence to delineate horizontally transferred material. In this review, we focus on the influence of several properties including biochemical, genetic flows, selection biases, and the biochemical-energetic properties shaping genome composition. Outcomes indicate a trend toward high G + C and larger genomes in free-living organisms, as a result of more complex and varied environments (higher chance for horizontal gene transfer). Conversely, nutrient limiting and nutrient poor environments dictate smaller genomes of low GC in attempts to conserve replication expense. Varied processes including translesion repair mechanisms, phage insertion and cytosine degradation has been shown to introduce higher AT in genomic sequences. We conclude the review with an analysis of current bioinformatics tools seeking to elicit compositional variances and highlight the practical implications when using such techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Highly pathogenic H5N1 avian influenza viruses have caused major disease outbreaks in domestic and free-living birds with transmission to humans resulting in 59% mortality amongst 564 cases. The mutation of the amino acid at position 627 of the viral polymerase basic-2 protein (PB2) from glutamic acid (E) in avian isolates to lysine (K) in human isolates is frequently found, but it is not known if this change affects the fitness and pathogenicity of the virus in birds. We show here that horizontal transmission of A/Vietnam/1203/2004 H5N1 (VN/1203) virus in chickens and ducks was not affected by the change of K to E at PB2-627. All chickens died between 21 to 48 hours post infection (pi), while 70% of the ducks survived infection. Virus replication was detected in chickens within 12 hours pi and reached peak titers in spleen, lung and brain between 18 to 24 hours for both viruses. Viral antigen in chickens was predominantly in the endothelium, while in ducks it was present in multiple cell types, including neurons, myocardium, skeletal muscle and connective tissues. Virus replicated to a high titer in chicken thrombocytes and caused upregulation of TLR3 and several cell adhesion molecules, which may explain the rapid virus dissemination and location of viral antigen in endothelium. Virus replication in ducks reached peak values between 2 and 4 days pi in spleen, lung and brain tissues and in contrast to infection in chickens, thrombocytes were not involved. In addition, infection of chickens with low pathogenic VN/1203 caused neuropathology, with E at position PB2-627 causing significantly higher infection rates than K, indicating that it enhances virulence in chickens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Highly pathogenic avian influenza virus infection is associated with severe mortality in both humans and poultry. The mechanisms of disease pathogenesis and immunity are poorly understood although recent evidence suggests that cytokine/chemokine dysregulation contributes to disease severity following H5N1 infection. Influenza A virus infection causes a rapid influx of inflammatory cells, resulting in increased reactive oxygen species production, cytokine expression, and acute lung injury. Proinflammatory stimuli are known to induce intracellular reactive oxygen species by activating NADPH oxidase activity. We therefore hypothesized that inhibition of this activity would restore host cytokine homeostasis following avian influenza virus infection. A panel of airway epithelial and immune cells from mammalian and avian species were infected with A/Puerto Rico/8/1934 H1N1 virus, low-pathogenicity avian influenza H5N3 virus (A/duck/Victoria/0305-2/2012), highly pathogenic avian influenza H5N1 virus (A/chicken/Vietnam/0008/2004), or low-pathogenicity avian influenza H7N9 virus (A/Anhui/1/2013). Quantitative real-time reverse transcriptase PCR showed that H5N1 and H7N9 viruses significantly stimulated cytokine (interleukin-6, beta interferon, CXCL10, and CCL5) production. Among the influenza-induced cytokines, CCL5 was identified as a potential marker for overactive immunity. Apocynin, a Nox2 inhibitor, inhibited influenza-induced cytokines and reactive oxygen species production, although viral replication was not significantly altered in vitro. Interestingly, apocynin treatment significantly increased influenza virus-induced mRNA and protein expression of SOCS1 and SOCS3, enhancing negative regulation of cytokine signaling. These findings suggest that apocynin or its derivatives (targeting host responses) could be used in combination with antiviral strategies (targeting viruses) as therapeutic agents to ameliorate disease severity in susceptible species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Short single-stranded oligonucleotides called aptamers, often termed as chemical antibodies, have been developed as powerful alternatives to traditional antibodies with respect to their obvious advantages like high specificity and affinity, longer shelf-life, easier manufacturing protocol, freedom to introduce chemical modifications for further improvement, etc. Reiterative selection process of aptamers over 10-15 cycles starting from a large initial pool of random nucleotide sequences renders them with high binding affinity, thereby making them extremely specific for their targets. Aptamer-based detection systems are well investigated and likely to displace primitive detection systems. Aptamer chimeras (combination of aptamers with another aptamer or biomacromolecule or chemical moiety) have the potential activity of both the parent molecules, and thus hold the capability to perform diverse functions at the same time. Owing to their extremely high specificity and lack of immunogenicity or pathogenicity, a number of other aptamers have recently entered clinical trials and have garnered favorable attention from pharmaceutical companies. Promising results from the clinical trials provide new hope to change the conventional style of therapy. Aptamers have attained high therapeutic relevance in a short time as compared to synthetic drugs and/or other modes of therapy. This review follows the various trends in aptamer technology including production, selection, modifications and success in clinical fields. It focusses largely on the various applications of aptamers which mainly depend upon their selection procedures. The review also sheds light on various modifications and chimerizations that have been implemented in order to improve the stability and functioning of the aptamers, including introduction of locked nucleic acids (LNAs). The application of various aptamers in detection systems has been discussed elaborately in order to stress on their role as efficient diagnostic agents. The key aspect of this review is focused on success of aptamers on the basis of their performance in clinical trials for various diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The emergence of H5N1 highly pathogenic avian influenza has caused a heavy socio-economic burden through culling of poultry to minimise human and livestock infection. Although human infections with H5N1 have to date been limited, concerns for the pandemic potential of this zoonotic virus have been greatly intensified following experimental evidence of aerosol transmission of H5N1 viruses in a mammalian infection model. In this review, we discuss the dominance of the haemagglutinin cleavage site motif as a pathogenicity determinant, the host-pathogen molecular interactions driving cleavage activation, reverse genetics manipulations and identification of residues key to haemagglutinin cleavage site functionality and the mechanisms of cell and tissue damage during H5N1 infection. We specifically focus on the disease in chickens, as it is in this species that high pathogenicity frequently evolves and from which transmission to the human population occurs. With >75% of emerging infectious diseases being of zoonotic origin, it is necessary to understand pathogenesis in the primary host to explain spillover events into the human population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Swine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression. IMPORTANCE: Influenza A viruses can change rapidly via reassortment to create a novel virus, and reassortment can result in possible pandemics. Reassortments among subtypes from avian and human viruses led to the 1957 (H2N2 subtype) and 1968 (H3N2 subtype) human influenza pandemics. Recent analyses of circulating isolates have shown that multiple genes can be recombined from human, avian, and swine influenza viruses, leading to triple reassortants. Understanding the factors that can affect influenza A virus reassortment is needed for the establishment of disease intervention strategies that may reduce or preclude pandemics. The findings from this study show that swine cells provide a mixing vessel for influenza virus reassortment independent of differential sialic acid distribution. The findings also establish that circulating neuraminidase (NA) and PA genes could alter the pathogenic phenotype of the pandemic H1N1 virus, resulting in enhanced disease. The identification of such factors provides a framework for pandemic modeling and surveillance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amoebiasis/amebiasis is a gastrointestinal infection caused by an enteric dwelling protozoan, Entamoeba histolytica. The disease is endemic in the developing world and is transmitted mainly via the faecal-oral route (e.g., in water or food) and may or may not be symptomatic. This disease of socio-economic importance worldwide involves parasite adherence and cytolysis of human cells followed by invasion that is mediated by galactose-binding (Gal/GalNAc) surface lectin. Disruption of the mucus layer leads to invasive intestinal and extraintestinal infection. Gal-lectin based vaccinations have conferred protection in various animal models against E. histolytica infections. Keeping in view the pivotal role of Gal/GalNAc lectin in amoebiasis vaccine development, its regulation, genomic view of the parasite involving gene conversion in lectin gene families, current knowledge about involvement of Gal/GalNAc lectin in adherence, pathogenicity, signalling, encystment, generating host immune response, and in turn protozoa escape strategies, and finally its role as effective vaccine candidate has been described. This review will help researchers to explore pathogenesis mechanism along with genomic studies and will also provide a framework for future amoebiasis vaccine development studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

 The pathogenicity of highly pathogenic avian influenza viruses (HPAIVs) is highly dependent on the presence of a polybasic haemagglutinin cleavage site (HACS) motif. This study demonstrated that HPAIV replication in chickens occurs primarily in vascular endothelium and is modulated by the molecular composition of the HACS motif.